RUCHY POPRZECZNE TŁOKA W WARUNKACH
OBWODOWO-WZDŁUŻNEGO GENEROWANIA FILMU
OLEJOWEGO

Antoni Iskra
Politechnika Poznańska,
Pl. Marii Skłodowskiej-Curie 5,
60-963 Poznań, tel. (061) 6653692

Streszczenie. W artykule przedstawiono model pozwalający wykonać symulację komputerową ruchów poprzecznych tłoka, uwzględniającą rzeczywisty kształt powierzchni bocznej tłoka, w tym również zmniejszenie się ciśnienia w filmie olejowym w okolicy piast służących do osadzenia sworzni tłokowego. Oś tłoka może być ustawiona dowolnie w stosunku do osi cylindra, a zatem osie te nie muszą się przecinać. Opracowany program komputerowy pozwala rozwiązywać większości zagadnień związanych ze zjawiskiem filmu olejowego. Jako przykład wybrano jednak zagadnienie ruchu poprzecznego tłoka, gdyż można przypuszczać, że właśnie ten ruch wymusza przepływ w filmie olejowym wzdłuż obwodu cylindra, zatem różnice w stosunku do modelu klasycznego będą największe.

1. Wprowadzenie

Określenie ruchów poprzecznych tłoka stanowi temat licznych publikacji, jednakże brak jest podbudowy teoretycznej, pozwalającej szacować tego typu ruchy bez wykonywania kosztownych pomiarów stanowiskowych. Główny problem opracowania modelu teoretycznego stanowi uwzględnienie rzeczywistej powierzchni tłoka, której odchyłki od idealnego walca są porównywalne z grubością filmu olejowego, jaki może być oczekiwany między tłokiem, a cylindrem. Autor niniejszego opracowania zbudował model pozwalający wykonać symulację komputerową ruchów poprzecznych tłoka, uwzględniającą rzeczywisty kształt powierzchni bocznej tłoka. Oś tłoka może być ustawiona dowolnie w stosunku do osi cylindra, a zatem osie te nie muszą być równoległe. Podstawowym parametrem określającym ruch poprzeczny tłoka jest jego prędkość, a dokładnie 4 składowej tej prędkości. Znając prędkość zbliżania się tłoka do gładzi możliwe jest określenie położenia tłoka w czasie \(i+1 \), jeśli znane jest położenie w czasie \(i \). Z drugiej strony prędkość ruchu poprzecznego musi być taka aby towarzyszący jej efekt wyciskania filmu olejowego generował reakcję równoważającą obciążenie poprzeczne tłoka, a więc przede wszystkim siłę normalną \(N \). Opisaną metodą można określić trajektorię osi tłoka w całym cyklu pracy silnika, co jest równoznaczne z dokładną symulacją ruchów poprzecznych tłoka. We wcześniejszych pracach analizowano parametry ruchu poprzecznego tłoka w warunkach zerowego przepływu oleju wzdłuż obwodu cylindra. Takie podejście do zagadnienia było konsekwencją analogii między warunkami tworzenia się filmu olejowego w zespole pięścien-cylinder i zespole tłok-cylinder. Mimo rzeczywistych analogii można jednak zauważyć zasadnicze różnice, przede wszystkim w proporcjach geometrycznych, stosunku wysokości pięścienia uszczelniającego do jego obwodu w współczesnych silników spalinowych wynosi około 0,02, natomiast analogiczna relacja w przypadku powierzchni bocznej tłoka daje wartości rzędu 0,2 i więcej. W przedstawionej sytuacji należy się upewnić

\[1\] Praca zrealizowana w ramach grantu badawczego Komitetu Badań Naukowych nr 9 T12D 035 17
czy zachodzi podobieństwo przepływów w filmach olejowych jakie generują wymienione elementy grupy tłok-pierścienie-cylinder. Jako przykład wybrano zagadnienie ruchu poprzedniego tłoka, gdyż można przypuszczać, że przede wszystkim taki ruch wymusi przepływ w filmie olejowym wzdłuż obwodu cylindra. W dalszej części rozważań przepływy oleju w filmie zarówno wzdłuż tworzącej cylindra, jak i jego obwodu będą określane przepływami trójwymiarowymi 3D.

2. Opis przykładu obliczeniowego

Do obliczeń przyjęto przykład silnika samochodu BRAVA 1,6/16V. W warunkach znamionowych wartości głównych parametrów pracy silnika przedstawiono powyżej wykresu przebiegu sił normalnych na rys. 1.

![Rys. 1. Przebieg sił normalnych dociskających tłok do gładzi w silniku samochodu BRAVA 1,6/16V w warunkach znamionowych](image)

Siły normalne generują ruchy poprzednie tłoka. Skutek działania tych sił, czyli przemieszczenie się poprzednie tłoka zależne jest od wielu czynników, w tym przede wszystkim od prędkości tłoka w ruchu wzdłużnym. Ponieważ w rozważaniach chodzi jedynie o udowodnienie możliwości zbudowania modelu przepływów trójwymiarowych w filmie olejowym w opracowaniu zostaną pominięte zagadnienia całościowego rozwiązania ruchu poprzedniego tłoka co oczywiście wymagałoby uwzględnienia zarówno efektu wyciskania jak i poślizgu. W rozważaniach przyjmuje się kształt stożkowo-barylkowy tłoka usytuowanego w różny sposób w stosunku do cylindra. Zostanie uwzględnione:
1 - współosiowe położenie tłoka i cylindra,
2 - równoległe ustawienie osi wymienionych elementów,
3 - pochylenie osi tłoka w stosunku do osi cylindra,
4 - wzajemne zwchowanie wymienionych osi.
3. Wyniki symulacji reakcji filmu olejowego dla modelu 3D

Na rys. 2 przedstawiono szczelinę między powierzchnią boczną tłoka i cylindrem w pierwszym przypadku.

Rys. 2. Rozkład szczeliny między tłokiem, a cylindrem dla wspólnotowego położenia tłoka w cylindrze w warunkach zimnego rozruchu silnika

Powyżej wykresu naniesiono główne parametry wzajemnego usytuowania powierzchni tłoka i cylindra oraz inne parametry mające wpływ na rozkład ciśnień i reakcję filmu olejowego. Te parametry to:

c - współczynnik lepkości dynamicznej oleju smarującego w [mPas],
m - prędkość kątowa wału silnika w [rad/s],
r - promień korby w [mm],
D - średnica cylindra w [mm],
H - wysokość części prowadzącej tłoka w [mm],
l - wartość szczeliny dla walca, w który wpisany jest rzeczywisty kształt części prowadzącej tłoka
owal - owalizacja części prowadzącej tłoka w [mm],
bar - strzałka baryłki powierzchni bocznej części prowadzącej tłoka w [mm],
stoż - stożkowatość powierzchni bocznej tłoka w [mm],
\(P_{max/min} \) - maksymalne i minimalne ciśnienie hydrodynamiczne w filmie olejowym w [bar],
\(H_{max/min} \) - maksymalna i minimalna wartość szczeliny między powierzchnią boczną tłoka, a gładzią cylindra w [µm],
\(M/M_x/M_y \) - wypadkowa wartość momentu siły reakcji filmu olejowego oraz jej składowe w [Nm],
\(S/S_x/S_y \) - wypadkowa wartość siły reakcji filmu olejowego oraz jej składowe w [kN],
\(V_x/V_y/V_x/V_yy \) - składowe predkości przemieszczania się osi tłoka w kierunku gładzi cylindra w [mm/s],
U - prędkość przemieszczania się tłoka wymuszone mechanizmem korbowym.
Dla powyższych parametrów przeprowadzono obliczenia wartości siły reakcji filmu olejowego w funkcji odległości osi czopu od osi panwi oraz obliczono wartości momentu tej siły. Wyniki obliczeń w formie wykresów przedstawiono na rys. 3.

![Reakcja filmu olejowego (mm/s)](image)

Rys. 3. Zależność siły reakcji filmu olejowego oraz wartości jej momentu od mimośrodowości osi tłoka i cylinda w przypadku równoległej pozycji tych osi oraz zbliżania tłoka do cylinda z prędkością 1 [mm/s]; tłok o dużej barylkowatości

Obliczenia przeprowadzono dla stożkowatości powierzchni bocznej tłoka o różnicy promieni $s=0,015$ [mm] oraz barylkowatości osi $b=0,010$ [mm]. W obliczeniach uwzględniono jedynie efekt wyciskania przy założeniu, że osie tłoka i cylinda oddalają się od siebie z prędkością $V=1$ [mm/s]. Analogiczne obliczenia, których rezultatem są wykresy na rys. 2 przeprowadzono dla powierzchni tłoka o mniejszej stożkowatości i barylkowatości wynoszącej odpowiednio $s=0,0075$ [mm] oraz $b=0,005$ [mm]. Wyniki obrazują wykresy na rys. 4.

![Reakcja filmu olejowego (mm/s)](image)

Rys. 4. Zależność siły reakcji filmu olejowego oraz wartości jej momentu od mimośrodowości osi tłoka i cylinda w przypadku równoległej pozycji tych osi oraz zbliżania tłoka do cylinda z prędkością 1 [mm/s]; tłok o niedużej barylkowatości

Porównując wykresy na rys. 3 i 4 można zauważyć, że reakcja filmu olejowego, a więc zdolność przenoszenia obciażen, w dużym stopniu zależna jest od barylkowatości i stożkowatości powierzchni bocznej tłoka. Zbliżając tłok do gładzi cylinda z prędkością 1 [mm/s] z pozycji współosiowej można zauważyć, że zgodnie z wykresem na rys. 3 wartość reakcji filmu olejowego jest znacznie wyższa niż na rys. 4. Z przeprowadzonych obliczeń wynika, że wartość ta w pierwszym przypadku wynosi 383 [N], a w drugim – 502 [N]. Pozycja współosiowa oznacza mimośród równy 0 [μm]. Dla cienijszych filmów olejowych, czyli większych mimośrodpów różnica reakcji filmu olejowego dla dwóch rozpatrywanych przypadków stożkowatości i bar- ylkowatości powierzchni bocznej tłoka są jeszcze większe. Zwiększając mimośród do 14 [μm], dla którego minimalna grubość filmu olejowego wynosi tylko 2 [μm], uzyskuje się reakcje filmu olejowego odpowiednio $4,17$ [μm] i $7,45$ [μm].
Z przeprowadzonych rozważań wynika jednoznacznie, że z punktu widzenia możliwości przenoszenia obciążeń statycznych wolniej zmniejsza się grubość filmu olejowego, jeśli powierzchnia boczna tłoka jest bardziej zbliżona do kształtu idealnego cylindra. Ta dość oczywista zależność nie musi jednak oznaczać, że z punktu widzenia minimalnej grubości filmu olejowego w całym cyklu pracy silnika najlepsza jest cylindryczna powierzchnia boczna tłoka. W przypadku osiowego ruchu tłoka w cylindrze taka powierzchnia nie jest w stanie wytworzyć filmu olejowego. Film olejowy może powstać tylko w przypadku szczeliny zbieżnej. Aby rozstrzygnąć, który z analizowanych przypadków przedstawionych na rys. 3 i 4 jest korzystniejszy przeprowadzono obliczenia reakcji filmu olejowego wywołanego ruchem osiowym tłoka, to znaczy zasadniczym ruchem wymuszonym mechanizmem korbowym. Wyniki przedstawiono na rys. 5 i 6.

Rys. 5. Zależność siły reakcji filmu olejowego oraz wartości jej momentu od mimośrodowości osi tłoka i cylindra w przypadku równoległej pozycji tych osi oraz przemieszczania się tłoka w cylindrze z prędkością 10 [m/s]; tłok o dużej baryłkowatości

Rys. 6. Zależność siły reakcji filmu olejowego oraz wartości jej momentu od mimośrodowości osi tłoka i cylindra w przypadku równoległej pozycji tych osi oraz przemieszczania się tłoka w cylindrze z prędkością 10 [m/s]; tłok o niedużej baryłkowatości

Jak się okazuje również w przypadku efektu klina smarowego wywołanego ruchem posłizgowym reakcja filmu olejowego osiąga większą wartość dla powierzchni bocznej tłoka o mniejszej baryłkowatości i stożkowatości. W przypadku dużego zbliżenia powierzchni bocznej tłoka i gładzi cylindra dla powierzchni bocznej tłoka o b=10 [μm] i s=15 [μm] uzyskuje się reakcję filmu olejowego równą 2,66 [kN]. Jeśli tłok jest w mniejszym stopniu baryłkowaty i stożkowaty – b=5 [μm] i s=7,5 [μm] to reakcja filmu olejowego wynosi 3,35 [kN]. Z przeprowadzonych symulacji komputerowych wynika zatem, że powierzchnia boczna tłoka o b=5 [μm] i s=7,5 [μm] wywołuje większą reakcję filmu olejowego zarówno w przypadku efektu wyciskania jak i posłizgu.
4. Straty tarcia oraz maksymalne ciśnienie w filmie olejowym dla modelu D

Film olejowy między powierzchnią boczną tłoka, a gladzią cylindra powinien nie tylko być jak najgrubszy, ale co istotniejsze starty tarcia między warstwami tworzącymi film olejowy powinny być jak najmniejsze. Można się spodziewać, że straty tarcia dla powierzchni bocznej tłoka bardziej zbliżonej do cylindra będą większe. Tak jest w istocie, ale okazuje się, że różnice start tarcia w obu rozpatrywanych przypadkach nie są duże. Na rys. 7 przedstawiono zależność mocy tarcia pochłanianej przez film olejowy od mimośrodowości osi tłoka względem osi cylindra.

Różnice sięgające 8% nie są na tyle duże aby uznać którąś z rozpatrywanych powierzchni za zdecydowanie korzystniejszą z uwagi na mniejsze starty tarcia. Może się okazać, że większe grubości filmu olejowego dla powierzchni bocznej tłoka o $b=5$ [μm] i $s=7.5$ [μm] powodują w końcowym rachunku mniejsze straty tarcia niż straty zachodzące dla tłoka o $b=10$ [μm] i $s=15$ [μm]. Jak można odczytać z rys. 7 zmniejszenie mimośrodowości osi tłoka i cylindra z 14 na 13 [μm] prowadzi do zmniejszenia strata tarcia o około 10%, co przekracza różnice między dwoma krzywymi na rys. 7 dla tej samej odciętej równej – jak już wspomniano - 8%.

Oprócz strat tarcia przy porównywaniu dwóch powierzchni bocznych tłoka należy również oszacować maksymalne ciśnienia w filmie olejowym. Oczywiście korzystniejszy jest przypadek, w którym maksymalne ciśnienia w filmie olejowym są mniejsze.

Na rys. 8 przedstawiono maksymalne ciśnienia w filmie olejowym dla rozpatrywanych wcześniej powierzchni bocznych tłoka.

Jak można zauważyć maksymalne ciśnienia w filmie olejowym dla obu rozpatrywanych przypadków są prawie identyczne. Nie należy się zatem spodziewać destrukcyjnego oddziaływania wysokich ciśnień w filmie olejowym na mikrostrukturę gladzi współpracujących ze sobą powierzchni tłoka i cylindra.
Rys. 8. Zależność maksymalnego ciśnienia w filmie olejowym od mimośrodowości osi tłoka i cylindra w przypadku równoległej pozycji tych osi oraz przemieszczania się tłoka w cylindrze z prędkością 10 [m/s]; dla tłoka o niedużej baryłkowości ciśnienia naniesiono linią grubszą

Dla zobrazowania złożoności procesu obliczania strat tarcia w filmie olejowym oraz rozkładu ciśnień w tym filmie na rys. 9 przedstawiono rozkład sił stycznych w filmie olejowym, a na rys. 10 ciśnień w filmie olejowym.

Rys. 9. Rozkład jednostkowej siły stycznej w filmie olejowym między powierzchnią boczną tłoka, a cylindrem. Powyżej wykresu naniesiono m.in. wartość wypadkową siły tarcia oznaczoną „Tarcie” oraz maksymalną wartość jednostkowej siły stycznej i moc tarcia oznaczone — „$t_{\text{max/moc}}$”

Rys. 10. Rozkład ciśnień w filmie olejowym między powierzchnią boczną tłoka, a cylindrem. Nad wykresem naniesiono charakterystyczne parametry przyjęte do obliczeń oraz wyniki obliczeń opisane wcześniej w tekście.
Oba rozkłady parametrów filmu olejowego dotyczą wspólnoświetnego położenia tłoka w cylindrze, przy czym tłok porusza się ruchem osiowym z prędkością 10 [m/s], nie wykonywując ruchu poprzecznego.

5. Wnioski

1. Ruchy poprzeczne tłoka będą wykazywały tym mniejszą amplitudę im większą reakcję filmu olejowego uzyska się dla określonego kształtu powierzchni bocznej tłoka.
2. Decyzja wyboru powierzchni bocznej tłoka gwarantującej lepsze parametry pracy silnika musi uwzględniać następujące parametry filmu olejowego: zdolność wywoływania reakcji filmu olejowego zarówno w wyniku efektu poślizgu, jak i wyciskania, straty tarcia między warstwami filmu olejowego oraz maksymalne wartości ciśnienia w tym miejscu.
3. Ocena parametrów filmu olejowego między powierzchnią boczną tłoka, a gładzią cylindra musi uwzględniać przepływ warstw filmu olejowego zarówno w kierunku ruchu tłoka wywołanego mechanizmem korbowym, jak i w kierunku obwodowym tłoka.
4. Rozpatrywane przypadki powierzchni bocznych tłoków dowodzą, że można tak zaprojektować tłok, aby zarówno reakcja filmu olejowego wywołana efektem poślizgu, jak i reakcja wywołana efektem wyciskania była większa niż dla powierzchni bocznej tłoka niekorzystnej, za którą należy uważać powierzchnię o zbyt dużej baryłkowatości równej 10 [μm] i stożkowatości równej 15 [μm].

6. Literatura

PISTON SECONDARY MOTION IN CONDITIONS OF A CIRCUMFERENTIAL-LONGITUDINAL OIL FILM GENERATION

Summary. The paper presents a model that allows carrying out the computer simulation of piston secondary motion, taking into account the actual shape of piston skirt including the phenomenon of drop in the oil film pressure close to the gudgeon pin. The piston axis can be arbitrarily positioned relatively to the cylinder axis, and the axes may not cross each other. The majority of problems connected with the oil film phenomenon can be solved using the developed computer program. However, the problem of piston secondary motion has been chosen for the example because one can presume that this motion would exert a circumferential flow along the cylinder and the differences in relation to the classic model would be the biggest ones.