WPŁYW ODCHYŁEK KSZTAŁTU CZOPA NA STRATY TARCIA W ŁOŻYSKU ŚLIZGOWYM

Antoni Iskra, Krzysztof Kula
Politechnika Poznańska,
Pl. Marii Skłodowskiej-Curie 5,
60-965 Poznań, tel. (0-61) 6653692

Streszczenie. W artykule zostaną przedstawione oszacowania wpływu tzw. baryłkowatości czopa na straty tarcia zachodzące w typowym łożysku silnika samochodowego. Ponieważ obok strat tarcia o prawidłowości pracy łożyska decydują również inne parametry takie jak maksymalne ciśnienie w filmie olejowym oraz minimalna grubość filmu olejowego, te parametry również będą podlegały analizie. Autorzy niniejszego artykułu opracowali program symulacji komputerowej pracy łożyska pozwalający szacować straty tarcia wewnętrznego w filmie olejowym z uwzględnieniem odchylek kształtu czopa oraz nierównoległości ustawienia osi czopa względem osi panwi. Program ten, oraz wyniki pomiarów przestrzennej trajektorii osi czopa są podstawą obliczeń strat tarcia w warunkach określonych w tytule referatu.

1. Wprowadzenie

W rozważaniach dotyczących parametrów filmu olejowego w łożyskach ślizgowych przyjmuje się, że zarówno gładź czopa, jak i panw stanowią idealne powierzchnie wałkowe o przekrojach okrągły. W rzeczywistości odkrywalne odstępstwa od tych założeń są tylko kwestią dokładności pomiarów. Prawie nigdy w typowych pomiarach warsztatowych błąd pomiaru nie jest mniejszy niż 5 µm, a praktycznie należy przyjąć, że bez spełnienia specjalnych warunków błąd pomiarów warsztatowych wynosi 10 µm. Niestety odchylki kształtu tego rzędu są porównywalne z grubością filmu olejowego w łożysku ślizgowym i mogą wywierać bardzo istotny wpływ na zachowanie się łożyska, w tym na moc tarcia pochłanianą przez łożysko. W łożyskach ślizgowych podstawowe rodzaje odchylek kształtu to tzw. baryłkowatość względnie siodłowatość czopa. Należy dodać, że wymienione odchylki kształtu czopa nie są tylko przypuszczeniem, ale stanowią udowodnioną prawidłowość będącą wynikiem relacji sztywności zespołów obrabiarki na której wykonano czop. W konsekwencji błędów kształtu może się pojawić znaczne odstępstwo od spodziewanych strat tarcia w łożysku, które bezpośrednio przekładają się na sprawność mechaniczną łożyska.

Przedstawione w artykule rozważania mają szczególną wartość również dlatego, że baryłkowatość czopa wynikająca z niedoskonałości obrabiarki wcale nie musi oznaczać zjawiska niepożądanego. Wał silnika spalinowego jest elementem o ograniczonej sztywności, a zatem w wyniku obciążenia wału momentem zginającym następuje ugięcie tego elementu.

1 Praca zrealizowana w ramach grantu badawczego Komitetu Badań Naukowych nr 9 T12D 035 17
Ugięcie takie może być oszacowane za pomocą wzorów znanych z wytrzymałości materiałów. Wał silnika spalinowego jest jednak elementem o skomplikowanym kształcie, a to unie- możliwia precyzyjne obliczenie ugięcia wału. Znacznie lepsze rezultaty daje pośredni pomiar ugięcia wału. Tego typu pomiary wykonuje się zwykle określając trajektorię ruchu osi czopa. Pomiary polegają na wyznaczeniu szczeliny między czopem, a panwią w czterech punktach. Punkty pomiarowe przyjmuje się zwykle w dwóch płaszczyznach, a w każdej z nich pomiary przeprowadza się za pomocą dwóch czujników których osie tworzą kąt 90°. Takie pomiary przeprowadzili autorzy artykułu, a wyniki przedstawiono w następnym rozdziale. W dalszej części opracowania zamieszczono kalkulacje zakładające baryłkowatość czopa, z której wynika kąt przy krawędzi łożyska równy zmierzonemu drogą pośrednią maksymalnemu kątowi ugięcia osi czopa.

2. Wyniki pomiarów ugięcia osi czopa

Autorzy niniejszego opracowania wykonań pomiary trajektorii osi czopa w łożysku silnika samochodu CINQUECENTO 703. Czujniki pomiarowe osadzono w panwi łożyska w dwóch płaszczyznach, a w każdej z nich czujniki rozmieszczono w ten sposób, aby ich osie tworzyły między sobą kąt 90°. Takie rozwiązanie pozwoliło określić tzw. drogę środka czopa. Wyniki przedstawiają rys. 1 i 2.

Rys. 1. Droga środka czopa w płaszczyźnie wewnętrznej łożyska
Rys. 2. Droga środka czopa w płaszczyźnie zewnętrznej łożyska

Na rys. 3 przedstawiono wykres obrazujący ugięcie osi czopa w całym cyklu pracy silnika oraz kąt ustawienia płaszczyzny prostopadłej do osi panwi w której mieści się oś czopa.

Rys. 3. Kąt ugięcia osi czopa – linia cieńsza, oraz skręcenie płaszczyzny prostopadłej do osi panwi, w której znajduje się oś czopa – linia grubsza

127
Na rysunku 1 i 2 naniesiono również punkty kojarzące położenie osi czopa z kątem obrotu wału korbowego. Ponieważ analizowany silnik pracuje w cyklu czterosuwowym droga środka czopa obejmuje kąt obrotu wału równy 720 °, po czym droga ta powtarza się. Określone za pomocą pomiarów droga środka czopa dają możliwość obliczenia zmian kąta ugięcia wału. Jak łatwo zauważyć, gdyby wał nie uginął się droga środka czopa w płaszczyźnie zewnętrznej i wewnętrznej musiałaby być identyczna. Uwaga ta dotyczy również punktów kojarzących położenie osi czopa z kątem obrotu wału korbowego.

Jak wynika z rys. 3 maksymalne ugięcie osi czopa wynosi około 1 [mrad]. Ponieważ szerokość łożyska wynosiła 35 [mm], to jeśli baryłkę odwzorować łużkiem okręgu otrzymuje się strzałkę tego łużku rzędu 25 [µm]. Jeśli zatem strzałka czopa będzie wynosiła 25 [µm] to przy maksymalnym ugięciu osi czopa będzie ta oś równoległa do stycznej do czopa przy krawędzi łożyska. Oznacza to, że w łożysku nigdy nie dojdzie do krawędziowej współpracy czopa z panwią. Taka współpraca uniemożliwiałaby tworzenie filmu olejowego, a zatem jest bardzo niekorzystna.

Oczywiście przedstawione rozważania nie dowodzą, że łożysko z założenia powinno wykazywać baryłkowatość zapewniającą brak krawędziowej współpracy czopa i panwi. Należy zatem zbadać, czy wymagana baryłkowatość nie prowadzi do istotnego zwiększenia strat tarcia wtedy kiedy osie czopa i panwi są równoległe, a jest to stan również występujący w łożysku. Na rys. 3 można znaleźć trzy punkty, w których ugięcie osi czopa zbliżone jest do 0 °, a to oznacza równoległe położenie osi czopa i panwi.

3. Wyniki obliczeń rozkładu ciśnienia w filmie olejowym oraz jednostkowych sił tarcia

Podstawą wykorzystania metod numerycznych do określenia przestrzennych parametrów filmu olejowego jest utworzenie siatki obrazującej szczelinę między powierzchniami ślizgowymi czopa i panwi. Na rys. 4 przedstawiono biegunową siatkę rozkładu grubości szczeliny w przypadku czopa o powierzchni idealnego wała, a na rys. 5 – dla czopa baryłkowatego o strzałce 25 [µm].

Rys. 4. Siatka rozkładu grubości szczeliny w przypadku czopa o powierzchni idealnego wała
Rys. 5. Siatka rozkładu grubości szczeliny w przypadku czopa barylkowatego o strzałce równej 25 \(\mu \text{m} \)

Jak już wcześniejszej podano analizowany problem polega na wyznaczeniu takiego położenia czopa w panwi aby reakcja filmu olejowego niezależnie od barylkowatości czopa wynosiła 1000 [N]. Taka zależność zachodzi oczywście w przypadku szczelin przedstawionych na rys. 4 i 5. Jak można przewidzieć im większa strzałka baryłki czopa tym mniejsza minimalna grubość szczeliny równoznaczna z minimalną grubością filmu olejowego.

Rozkład ciśnienia w filmie olejowym jest uzależniony od wielu parametrów pracy łożyska oraz właściwości oleju smarującego łożysko. Te parametry to przede wszystkim prędkość obrotowa łożyska, prędkość zmiany położenia osi czopa względem osi panwi oraz wzajemnego ustawienia wymienionych osi, gabarytów łożyska oraz ciśnień brzegowych. Jeśli chodzi o właściwości oleju, to podstawowe znaczenie ma współczynnik lepkości dynamicznej \(\eta \). Inne właściwości oleju określone np. współczynnikiem sprężystości, ściśliwości itp. w przeciętnych warunkach pracy silnika spalinowego mogą nie być uwzględniane. Olej smarujący jest zatem traktowany jako idealna ciecz newtonowska, dla której opór tarcia wewnętrznego jest liniowo zależny od gradientu prędkości.

Na rys. 6 przedstawiono rozwinięty rozkład ciśnienia w filmie olejowym dla usuwania czopa w panwi zilustrowanego na rys. 4, a na rys. 7 analogiczny rozkład ciśnień dla przykładu z rys. 5.

Rys. 6. Rozwinięty rozkład ciśnień w filmie olejowym dla usuwania czopa o kształcie idealnego walca w panwi zilustrowanego na rys. 4
Rys. 7. Rozwinięty rozkład ciśnienia w filmie olejowym dla usytuowania czopa baryłkowatego w panwi zilustrowanego na rys. 5

Powyżej wykresów naniesiono parametry pracy łożysk oraz wartości współczynnika lepkości dynamicznej przyjęte w symulacji komputerowej. Główne parametry to:

- B – szerokość łożyska,
- Obw – obwód łożyska,
- \(\eta \) – współczynnik lepkości dynamicznej,
- U – prędkość obwodowa łożyska,
- Vzx, Vzy, Vwx, Vwy – składowe prędkości osi czopa względem osi panwi.

Powyżej wykresów na rys. 6 i 7 naniesiono również parametry wynikowe tj.

- \(P_{\text{max/min}} \) – maksymalną i minimalną wartość ciśnienia hydrodynamicznego w łożysku,
- i, j – współrzędne węzłów siatki dla maksymalnego ciśnienia,
- \(H_{\text{max/min}} \) – maksymalną i minimalną grubość filmu olejowego,
- Moment/Moments/Momenty – moment wypadkowy i składowe momentu reakcji filmu olejowego,
- Siła/Silax/Silay – reakcja wypadkowa filmu olejowego i jej składowe.

W symulacji przyjęto teorię Gumbela [1] zakładającą, że w obszarach, gdzie wynik symulacji prowadzi do ciśnień ujemnych ciśnienia rzeczywiste osiągają wartość zerową. Fakt, że uzyskano moment reakcji filmu olejowego równy 0 dowodzi poprawności symulacji komputerowej pracy łożyska, co wynika z przyjętej równoległości osi czopa o panwi.

Znając rozkład ciśnień w filmie olejowym można precyzyjnie określić lokalną wartość siły stycznej w filmie olejowym i dalej sumaryczny opór tarcia w łożysku. Z iloczynu oporu tarcia i prędkości obwodowej czopa wynika moc, która jest potrzebna na pokonanie oporów tarcia.

 Wyniki symulacji komputerowej lokalnych jednostkowych sił tarcia przedstawiono na rys. 8 i 9.
Rys. 8. Rozkład jednostkowej siły tarcia wewnętrznego w filmie olejowym dla walcowego czopa usytuowanego w panwi zgodnie z rys. 4

Rys. 9. Rozkład jednostkowej siły tarcia wewnętrznego w filmie olejowym dla baryłkowego czopa usytuowanego w panwi zgodnie z rys. 5

Powyżej rysunków - oprócz niektórych wartości opisanych wcześniej – naniesiono:
- sumaryczną wartość tarcia obwodowego – Tarcie,
- maksymalną wartość jednostkowej siły tarcia oraz moc tarcia – tmax/moc.
Symulacje, których wyniki przedstawiono odpowiednio na rys. 4, 6 i 8 oraz 5, 7 i 9, powtórzono dla czterech barylkowatości czopa, a mianowicie 5, 10, 15 i 20 [\mu m]. Każdorazowo przyjmowano takie usytuowanie czopa w panwi aby reakcja filmu olejowego wynosiła 1000 [N]. Uzyskane wyniki przedstawiono na wykresach zbiorczych – rys. 10 i 11.

![Diagram 1](image1)

Rys. 10. Zależność minimalnej grubości filmu olejowego oraz maksymalnej wartości ciśnienia w filmie od barylkowatości czopa dla reakcji wypadowej równej 1000 [N]

![Diagram 2](image2)

Rys. 11. Zależność obwodowej siły tarcia filmu olejowego oraz mocy traconej w wyniku tarcia od barylkowatości czopa dla reakcji wypadowej równej 1000 [N]

Na rysunku 10 przedstawiono do jakich minimalnych grubości filmu olejowego prowadzi warunek jego reakcji równej 1000 [N]. Jak łatwo zauważyć zmniejszenie grubości filmu olejowego odpowiada w przybliżeniu połowie wartości strzałki baryłki odwzorowującej czop, jest to więc bardzo istotne ograniczenie grubości filmu olejowego, mogące w konsekwencji

Na rysunku 11 przedstawiono zależność obwodowej siły tarcia filmu olejowego oraz mocy traczonej w wyniku tarcia od barylkowatości czopa dla reakcji wypadkowej równą 1000 [N]. Wyniki są zaskakujące. Okazuje się, że barylkowatość czopa w bardzo niewielkim stopniu wpływa na siłę tarcia. Jest to bardzo istotne spostrzeżenie, gdyż wynika z tego, że jeśli czopy wału korbowego wykonane zostaną w kształcie barylki, tak aby w łożysku nie dochodziło do krawędziowej współpracy czopa i panwi, to nie należy się spodziewać zmniejszenia sprawności mechanicznej łożyska.

4. Wnioski

1. wskazane jest takie kształtowanie czopów wału korbowego silników aby nie dochodziło do krawędziowej współpracy czopa z panwią nawet przy największych ugięciach wału spowodowanych jego obciążeniem,
2. barylkowy kształt czopa o strzałce wynoszącej do 1 promila średnicy nie powoduje zmniejszenia sprawności mechanicznej łożyska,
3. barylkowatość czopa prowadzi do zmniejszenia minimalnej grubości filmu olejowego oraz zwiększenia maksymalnego ciśnienia w filmie. Jeśli zostaną przekroczone granice dopuszczalne tych parametrów, to może to prowadzić do zerwania filmu olejowego lub zniszczenia gładzi panwi spowodowanego nadmiernym obciążeniem lokalnym

Bibliografia

The effect of the journal form variations on the friction losses in the plain bearing

Summary. In this paper the estimation of the effect of the so called barrel shape of the journal on the friction losses taking place in the typical bearing of the car engine will be presented. Apart from friction losses there are other parameters that decide about regularity of bearing work such as: maximal pressure in oil film and minimal width of oil film. This parameters will also be taken under analysis. The authors of this paper have developed the programme of the computer simulation of the bearing work enabling the estimation of the losses of the inner friction in the oil film when taking into account the variations of the journal form and out-of parallelism of the position of the journal axis in relation to the shell axis. This programme and the results of the measurements of the spatial trajectory of the journal axis are the basis for calculations of the friction losses in the conditions stated in the title of this paper.