LATEST DEVELOPMENTS IN PARTICULATE MATTER MEASUREMENT
Horiba Engine Measurement Division

Mr. Les Hill
Mr. Rudolf Mörkl
HORIBA GmbH, Kaplanstrasse 5, A-3430 TULLN, AUSTRIA
Tel.: + 43 2275 65225, Fax: + 43 2275 65230
e-mail: moerkl@horiba.co.jp

MDLT-130X-T
A Partial Flow Dilution System For Particulate Measurements
Under Transient Engine Operating Conditions

- The MDLT-130X-T is designed to meet the requirements of the new ISO regulations for Heavy Duty Diesel engine measurement currently under preparation. The regulations require the measurement of particulates under transient engine conditions. Existing legislation requires the use of full flow dilution systems for this measurement.
- The system operates as a partial flow dilution system, operating under flow proportional conditions controlled by exhaust flow rate signals from the engine test cell.

Conventional particulate measurement uses the full flow dilution tunnel. The MDLT measures particulate by diluting part of the exhaust flow. The volume of exhaust transferred from the exhaust is proportional to the total engine exhaust flow rate.
There are two basic requirements for the partial flow dilution system:

- Measurement and control of the proportion of engine exhaust taken for dilution. Methods include:
 - physical exhaust splitters
 - iso-kinetic flow sampling using sample probe pressure balancing
 - exhaust flow measurement or calculation controlling variable flow dilution systems (such as MDLT-130X-T)
- Transfer of exhaust sample with the minimum possible loss of particulate material (keep transfer line smooth, short, straight and high temperature)

![MDLT-130X-T Flow Schematic](image)

Dilution Air Flow Control For Transient Testing
- For transient testing, the speed of the dilution air flow control needs to be controlled quickly to maintain proportional sampling.
- The MDLT uses a fast response piezo-valve in combination with a CFO adjusted for the minimum dilution air flow
Example Data for ETC

Step Response of Piezo Valve

(measured by VFM)

- Flow Rate (L/min)
- Time (sec.)

ETC SAMPLING Correlation by MDLT-1302T

- Slope = 0.000269
- \(r^2 = 0.999 \)
- Intercept = 0.047 L/min
- ETC Test Cycle Corr. Coeff = 0.999
MDLT-130X-T Feature Summary

- Use of VFM (SAO) provides accurate, rapid flow rate measurement of diluted exhaust and dilution air flow rates
- Auto-calibration adjustment sequence maintains precision of the proportional sampling with minimal operator action
- Use of piezo-valve provides fast and accurate control of the dilution air flow rate for accurate proportional sampling on transient engine testing
- Exhaust flow “learning” routine can be used to improve the precision of the proportional sampling by applying “feed-forward” control
- MDLT-130X-T provides accurate proportional sampling from a real time exhaust flow measurement signal.

MEXA-1220PM Real-Time PM Analyzer

- Real-time PM measurement
 Flame Ionized Detector (FID) is utilized to measure Soot and SOF (Soluble Organic Fraction) continuously.
- Soot, SOF separation measuring
 Use of two different heated lines enables it to measure Soot and SOF separately.
- Gas sampling from direct engine line or diluted tunnel line
 Particularly, direct gas sampling is more effective in developing engine system.

Principal of SOF (Soluble Organic Fraction) Measurement
Setup for Direct Measurement

Example data for direct measurement
Ultra Low Mass PM Analyzer
Oxidization & Deoxidization Method
MEXA-1370PM

In the ambient
SOF (VOF) Grow up in the ambient air

Full Diffusion Tunnel

PM Mass = Filter Mass After Sampling - Filter Mass Before Sampling
Problem of the Filter Weighing:
- **Light PM on Heavy Filter**
 70 mm Filter: 200 mg
 Particulate: 0.2 mg
 Particulate: \(\text{Filter} = 1 : 1.000 \)
 The error of the filter weighing will cause very large error for the particulate mass measurement
- **Need to know SOF(VOF), Soot and Sulfate contents**
 for analysis of engine combustion
 for catalyst converter or particulate trap developing

What is needed for the alternatives?
- Dilution tunnel is still necessary;
- to represent the actual atmospheric dilution process
- to convert gas to particle
- to correlate PM measurement with the conventional method
- High Sensitivity
- Easy handling
- SOF(VOF), Soot and Sulfate Measurement
- for the development and the improvement of diesel engine and the after treatment systems

Principle of MEXA-1370PM

VOF, soot and Sulfate Calculation I
1. Fixed Volume Gas (CO$_2$, SO$_2$) Calibration
 Known mass. Integration of gas detector output
2. Generated CO$_2$ & SO$_2$ mass Measurement
3. Determination of VOF, soot and sulfate using the mass relations

- There is very strong correlation between MEXA-1370PM and gravimetric method even for low PM mass.
- SOF(VOF), soot and sulfate mass analysis in 4 minutes is available.

MEXA1370PM has the ability to become an alternative method for conventional gravimetric method.