

CESAR Cost-Effective Small AiRcraft

integrated project 3rd call of FP6 EU

CESAR Consortium

Total budget Euro 33,7 mil. EUR EC contribution 18,1 mil. EUR 39 participants, 14 countries

7 a/c designers / manufacturers Aero Vodochody, Piaggio Aero, Socata EADS, Evektor, PZL, Eurocopter, INCAS;

12 a/c systems manufacturers

Liebherr LTS, Aernnova (former Gamesa), HAI, Jihostroj, Technofan, Jihlavan, Mesit, Hexagon, Merl, SRM, Speel, Unis

3 engine manufacturers

Turbomeca, Ivchenko, PBS

11 research establishments EADS-CRC, DLR, NLR, ONERA, VZLU, FOI, CIRA, ARC, IoA, Sicomp, CENAERO

6 universities

Universities of Manchester, Aachen, Brno, Liege, Munich & Patras

of these 8 SMEs

CESAR objectives

Increasing European competitiveness in the field of small commercial aircraft from 5 to15 passengers

- Time to market reduction by 2 years
- Development cost reduction by 20%
- Reduction of manufacturing and assembly costs by 16%
- Propulsion unit efficiency and affordability (to reduce fuel consumption by 5 to 15 %, noise emissions by 3 to 6 dB(A), engine weight by 7-9%
- Optimization of selected aircraft systems (health and usage monitoring system (HUMS), electro-hydraulic and electromechanical actuation technologies (EHA, EMA), air systems

Project Structure

Workpackages	RTD areas addressed by the proposal	Time to Market Reduction	Development Costs Reduction	Pax comfort, safety and environmental impacts	Propulsion unit and a/c system cost reduction	Reduction of Manufacture and Assembly Costs	Reduction of Operational Costs
WP 1 Aerodynamic Design	Task 1.1 - High fidelity design tools	***	***	*	**	***	**
	Task 1.2 - Advanced wing	***	***	**	*	**	**
	Task 1.3 - Flight dynamics	***	***	***	*	-	*
WP 2 Structural Design	Task 2.1 - Operational loads	***	***	-	-	-	*
	Task 2.2 - New design approaches to advanced airframe structures	**	***	**	-	***	*
	Task 2.3 - New strength evaluation methods of advanced airframe structures	**	**	**	-	-	**
	Task 2.4 -Smart structural health monitoring	*	*	***	**	-	**
	Task 2.5 - Flutter Prevention for small aircraft	**	**	**	-	-	-
WP 3 Propulsion Integration	Task 3.1 - Advanced structure of small gas turbine engine	***	**	**	**	***	**
	Task 3.2 - Complex power-plant control systems	**	**	***	**	**	**
	Task 3.3 - Environmentally friendly propeller propulsion	***	***	***	**	*	**
WP 4 Optimised Systems	Task 4.1 - Cost effective actuation	**	**	*	**	**	*
	Task 4.2 - Competitive technologies for air systems	*	**	***	***	*	**
	Task 4.3 - Integrated diagnostics & on-condition-maintenance	*	-	**	**	*	***
WP 5 Devel. Concept Integration and Validation	Task 5.1 - New design and development concept	***	**	-	-	*	*
	Task 5.2 - Validation platform	**	**	*	*	*	*

Table 2.3.1 - Matrix of RTD work and project objectives

- **
- Very positive impact/effect Positive impact/effect Slightly positive impact/effect Indifferent *

WP 1 - DLR Aerodynamic Design

Task 1.1 - INCAS High-fidelity design tools

Task 1.2 - DLR

Advanced wing

Task 1.3 - EADS-CRC Flight dynamics

EXPECTED RESULTS

AERODYNAMIC DESIGN

T1.1 - High fidelity design tools

- Proved high fidelity aerodynamic tools customized for small aircraft development
- Adaptation and improvement of specific tools to be used for aerodynamic analysis
- Providing methods, tools, data and experience which allow accelerating the aerodynamic design

T1.2 - Advanced wing

- Demonstration of the improvement of design process results by means of CFD methods in combination with optimization strategies
- Design with a higher degree of safety with respect to flow separation and icing
- Catalogue of advanced airfoils
- Wing design optimization
- Reliable tool for analysis of wing contamination

T1.3 - Flight Dynamics

- Development of more consistent chain of tools and database for flight dynamics analyses
- Proven flight dynamics testing procedures customized for general aviation

Task 2.1 - EVEKTOR

Operational loads

Task 2.2 - PIAGGIO

New design approaches to advanced airframe structures

Task 2.3 - VZLU

New strength evaluation methods of advanced airframe structures

Task 2.4 - GAMESA

Smart structural health monitoring

Task 2.5 - DLR

Flutter prevention for small aircraft

STRUCTURAL DESIGN

T2.1 - Operational loads

• Affordable tool for estimation of operational and fatigue load

T2.2 - New design approaches to advanced airframe structure

• Assessment of alternative design and manufacture technologies (welding, riveting, composite technologies)

T2.3 - New strength evaluation methods of advanc. airframe structures

- Reliable and relatively fast methods and tools for strength evaluation for CS-23 aircraft
- Develop. of an effective tool able to analyze composite structures

T2.4 - Smart structural health monitoring

• Real-time structural health monitoring system resistant to harsh conditions

T2.5 - Flutter prevention for small aircraft

- Development of improved methods for reliable and fast prediction of aeroelastic stability
- Optimization of analytical and experimental approaches and methods to reduce time and costs of ground vibration tests and flutter certification process

CESAR

Task 3.1 - IVCHENKO

Advanced structure of small gas turbine engine

Task 3.2 - UNIS

Complex power-plant control system

Task 3.3 - PIAGGIO Environmentally friendly propeller propulsion

EXPECTED RESULTS

PROPULSION INTEGRATION

T3.1- Advanced structure of small gas turbine engine

- Design tools and technologies for development of modern turboprop engine, incl. adv. design config. of the virtual engine
- Low weight centrifugal compressor and increased efficiency of thermodynamic cycle
- Cooled Small Turbine
- High reliability and efficient transmission

T3.2 - complex power-plant control system

- Low cost "FADEC" with self-diagnostics, incl. propeller control for smaller engines
- Development of new storage and communication module for analytical technology with data downloads

T 3.3 - Environmentally friendly propeller propulsion

• Low-noise propeller design

WP 4 - EUROCOPTER Optimized Systems

Task 4.1 - UoM Cost-effective actuation

Task 4.2 – LIEBHERR LTS Competitive technologies for air system

Task 4.3 – EUROCOPTER Integrated diagnostics and on-conditioning maintenance

> EXPECTED RESULTS

OPTIMIZED SYSTEMS

T4.1 - Cost effective actuation

- Efficient and low weight electro-hydraulic actuation (EHA)
- Advanced concept for electro-mechanical actuation (EMA)

T4.2 - Competitive technologies for air systems

Competitive integrated environmental control system and cabin pressure system

T4.3 - Integrated diagnostics and on-condition maintenance

• Reduction of delays and cancellations of flights due to unscheduled maintenance and repairs

DESIGN CONCEPT INTEGRATION AND VALIDATION

WP 5 - PIAGGIO Design Concept Integration and Validation

Task 5.1 - NLR New design and development concept

> Task 5.2 - PIAGGIO Evaluation platforms

WP5 - New design and development concept

- Integrated computer environment for the design of small aircraft
- Optimized processes and knowledge management for design and development of small aircraft

Figure 1 - IDS concept for small a/c

pressurized aircraft.

CESAR Outcomes:

- <u>Technical achievements</u> (knowledge, software/tools, methodologies, new technical solutions, technologies, new concepts, up to hardware validation/demonstration)
- ✓ Development of <u>international cooperation</u> in the GA sector with intensive participation of larger manufacturers, SMEs, research establishments and universities,
- ✓ Evidence of <u>long-term interest of GA industries</u> in participation in EC funded programmes
- Increase of visibility of GA, promotion towards European bodies and even on national level
- ✓ Demonstration of <u>organizational and managerial competence</u> of GA stakeholders to prepare and run RTD projects (even L2)
- Experience from CESAR project will enable to better target specific research challenges of GA within the next research projects

THANK YOU FOR YOUR ATTENTION

www.cesar-project.eu